Mathematics and mastery at St Mark's

recall important	be fluent in number,	take risks, be resilient
number and concept	choosing the most efficient	and be enthused by
facts	ways to solve problems	challenge
enjoy their Maths lessons	Our aims are for	feel like they can succeed and make progress
have a deep and broad understanding of the curriculum	children to master maths by	be able to apply their knowledge in both Maths and other areas of the curriculum
be able to reason	be able to make connections	have a secure
Mathematically by	and links between different	conceptual
explaining and proving	areas of Maths	understanding of ideas

Developing Mastery in Maths at St. Mark's

Our vision for Maths

The journey of a learner of Maths at St Mark's

All the resources for Maths are located:

- White Rose Website
- NCETM Mastery PD
 materials
- Testbase (for pitch and expectations)
- System: Curriculum Teams/Maths
- Concrete resources in class
 or Beehive
- Display: calculation posters, Number Sense strategies, number lines, gattegno charts etc

What we expect to see in a great Maths lesson

- The ideologies of TfM used in lessons (fluency, mathematical thinking, variation, coherence and, variation and structure)
- Enthusiasm and engagement from the children, and yourself!
- Access to problem solving and reasoning for ALL
- Differentiation by support, resources, time and expectations as opposed to task. Same opportunities for MOST
- Visual and/or concrete resources to support conceptual understanding
- Use of verbal and written stem sentences in lessons and intelligent practice
- High quality mathematical language
- Children explaining their maths thinking as standard practice

3 top tips for great Maths teaching

- Know the maths journey and the small steps within it including prior knowledge, skills and understanding. Small steps = successful learners
- Include non-routine practice
- Make connections across different areas of Maths so the strands are not seen as discrete areas

Also remember...

- Flashback maths
- Rockstars and Numbots
- Number sense (intervention)
- Rich investigation lessons!
- Gap analysis to inform teaching

Mathematics and mastery at St Mark's

What is mastery?

A mathematical concept or skill has been mastered where, through exploration, clarification, practice and application over time, a person can represent it in multiple ways, has the mathematical language to be able to communicate related ideas and can think mathematically with the concept so that they can independently apply it to a totally new problem in an unfamiliar situation.

• Drury 2014

The focus is on the development of deep structural knowledge and the ability to make connections. Making connections in mathematics deepens knowledge of concepts and procedures, ensures what is learnt is sustained over time, and cuts down the time required to assimilate and master later concepts and techniques.

• NCETM 2014

What does Mastery teaching look like?

- Whole class mixed ability teaching
- Giving <u>all</u> children the same opportunities
- Challenging children with breadth and depth of learning rather than accelerating learning
- Working with concrete and visual representations where possible to enable understanding before moving onto abstract (CPA approach)
- Giving children stem sentences (sentence frameworks) during inputs and within their task to embed understanding, skills and knowledge
- Work through maths problems which have small step changes (variation) so that children can make links and succeed
- Give <u>all</u> children the opportunity to use mathematical thinking to solve problems and also reason (most lessons!)
- Encourage children to be using high quality mathematical language with the use of stem sentences and reason through explanation
- Give children the opportunities to become fluent and efficient in mathematics, especially number and fraction
- Ensure that children are exposed to routine problems and visuals as well as non-routine
- Expose patterns and connections in maths where possible

Conceptual Understanding Cy Mathematical Thinking	Core Principle	Evidence
	Variation	Small steps/small changes from one task to the next Making connections explicit Small changes made within procedural work, in reasoning questions and in visuals which are used The newer the concept or the less confident, the more variation should be used When children have mastered a concept, they can begin to move away from variation in practice
	Number Fluency	Frequent retrieval of taught concepts Secure knowledge of facts (x tables, measure etc.) Stem sentences used to embed these facts Progression in mental and written (formal and informal) methods Gaps are filled Encourage children to use efficient methods to solve problems
	Conceptual Understanding	Concrete and visual representations are used where they support learning Concrete, pictorial then abstract approach (CPA) Bar model, part-part wholes are used to represent structures Use routine and non-routine representations
	Mathematical Thinking	Depth and breadth of learning to embed learning Mathematical thinking as an element of most lessons Different types of reasoning tasks Stand alone reasoning lessons

White Rose

- White Rose are an organisation of lead Maths practitioners who have developed planning, training and resources for schools to use within Primary and Secondary Schools
- Their long and medium term plans are free along with some of their resources. We are premium subscribers, so access to resources (used for ideas)
- Longer units of work for more depth and breadth of study compared to other models such as Hampshire's –broken into smaller steps
- White Rose follows a 'Mastery' curriculum so goes hand in hand with our Maths curriculum
- We use their yearly overviews and follow the small steps progression for teaching sequence
- Use guides to support teaching knowledge and fluency within lesson

Yearly Overview

Small steps progression

End of Block Assessments

Schemes of Learning

Lesson Guides Autumn Year 4 | Autumn term | Block 1 - Place value | Step 1 Scheme of learning Year 1 Notes and guidance **Key questions** Children learned how to represent numbers to 1,000 in Year 3 -a concept that will be reinforced in this small step to ensure the What is the value of each base 10 piece What is the value of each place value counter have a sound understanding. This understanding will be impor later in the block, as children begin to explore numbers over 1,000 How did you count the pieces? Does the order in which you build the number matter Examples have been chosen to ensure that children look at representing and interpreting numbers that children look at ones, to reinforce the idea of using zero as a placeholder. Base Can you represent the number another way? What do you do if there are no tens? 10 and place value counters are used throughout. Base 10 can help children understand the size of a number, while place value counters are more efficient later in the block, when working with 4-digit numbers. Autumn Possible sentence stems There are _____ hundreds, _____ tens and _____ one Scheme of learning The number is _____ Things to look out for When a number has no _____, then we use _____ as a placebolder Children may write numbers incorrectly, for example 4 as 400201 Year 4 Children may not understand the place value of each dial Children may not use placeholders appropriately National Curriculum links Children may not recognise the value of a place value Read and write numbers up to 1,000 in nur counter correctly, because different place value counter Identifu, represent and estimate numbers using differen are identical in size. Year 4 | Autumn term | Block 1 - Place value | Step 1 White **Key learning** Rose How many candles are there? What numbers are represented? Maths 1 19 1111 #MathsEveryoneCan Write your answer in numerols and worde

White Rose Maths

> White Rose Maths

Annie is drawing place value counters to represent 51i

Add and subtract integers

Notes and guidance

This small step reviews and extends children's learning of how to add and subtract integers with any number of digits. Children use the formal column method for numbers with the same and different numbers of digits. They also practise mental strategies with both large and small numbers, using their understanding of place value.

Children solve multi-step problems, choosing which operations and methods to use based on the context of the problem and the tupes of numbers involved.

The use of concrete manipulatives can support children's understanding, especially where exchanges are required.

Things to look out for

- · Children may not line the numbers up correctly when setting out an addition or a subtraction.
- Children may try to use formal methods when mental strategies would be more appropriate, for example adding 999 is more easily done by adding 1,000 and then subtracting 1
- When solving multi-step problems, children may need support to choose the type and order of operations needed.

Key guestions

- What is the greatest digit you can have in a place value column?
- How do you exchange when adding?

Possible sentence stems

- In column addition/subtraction, we start with the _____ place value column.
- The _____ is in the _____ column. It represents _____

National Curriculum links

- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and whu
- Solve problems involving addition, subtraction, multiplication and division
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Add and subtract integers

Key learning

Work out the additions.

	6	2	3			5	6	4	7			3	4	6	0	8	
+	3	5	8		+		8	6	1		+	2	9	0	8	7	Г
																	Γ

Work out the subtractions.

	7	5	2			8	1	6			3	4	6	0	8
-	3	1	5		-	5	3	9		-	1	2	7	2	7

Find the answers to the calculations.

	3	4	6	2	1			4	7	6	1	3	2	5	
+	2	5	7	3	4		-		9	3	8	0	5	2	
															Γ

· Which calculations would you work out mentally, and which would you work out using the column method?

67,832 + 5,258	834,501 - 299,999	450,000 + 201,000				
8 million sub	8 million subtract $3\frac{1}{2}$ million					

Work out the answers to the calculations.

Find the missing digits.

	5	2	2	4	7	
+	3		5	9	0	4
	9	0		3		2

 The perimeter of the triangle is equal to the perimeter of the rectangle. Work out the unknown length of the triangle.

Year 6 | Autumn term | Block 2 - Addition, subtraction, multiplication and division | Step 1

White Rose Maths

Add and subtract integers

Reasoning and problem solving

3-page **guide** per lesson

- notes and guidance
- key questions/ sentence stems/misconceptions
- varied fluency ideas
- reasoning and problem solving ideas

Do you all have log-ins?

White R©se Maths

- How do you exchange when subtracting?
- Which columns are affected by the exchange?
- How do you know whether to add or subtract the numbers?
- How can you check your answer to the calculation?

Use White Rose as a start point, then create your own lesson resources

Part 2 - circle the odd one out and explain why I can understand the place value of ones, tens and hundreds Part I - find out what number these visuals represent There are: Thirty-five __ tens ___ ones 30 Which represents the number: 5 There are: _ tens The value I have circled is the odd one out because it represents __ ones whereas the other boxes represent the number ... Which represents the number: There are: _ tens _ ones Which represents the number: There are: 400 + 30 + 4 Four hundred and thirty four _____ hundreds ____ tens ___ ones The value I have circled is the odd one out because it represents . whereas the other boxes represent the number ... Which represents the number: 10 10 There are: _____ hundreds Six hundreds Three tens _____ tens Two onles _____ ones Which represents the number: 0 There are: н _ hundreds 6 3 1 _____ tens 600 1 20 __ ones Which represents the number: The value I have circled is the odd one out because it represents

whereas the other boxes represent the number

I can expand 3-digit numbers and use this to solve addition and subtraction problems mentally

Part I - Work out how many hundreds, tens and ones there are and then write the corresponding addition sentences.

Н	Т	0
100 100	10 10 10 10	
100	10 10 10 10	
There are hundre	ds, Write 3 additio	n number sentences:
tens and or	300 + 4	80 + 7 = 387
Which represents the num	nber: 387 = 7	00 + 7 = 387 7 + 80 + 300
Н	Т	0
There are hundre tens and or	ds, Write 3 additio	n number sentences: _+=
Which represents the num	nber:+	.*= *+
Н	Т	0
There are hundre tens and or	ds, Write 3 additio	n number sentences: _+ £= £
Which represents the num	nber: £+£ £=£	+ £= £ + £+ £

Part 3 - Use the part-part whole to help you find the answer to the subtraction question using mental skills.

Part 2 - Colour in the 'whole' red and the 'parts' green. Find the missing values in the part-part wholes then write the addition number sentences.

Part 4 - Solve the blank values in each set.

50 + 4 =	20 + 9 =
50 + = 54	20 + = 29
4 + = 54	9 + = 29
54 = 54	29 = 20
54 = 54	29 = 9
200 + 90	200 + 9
200 + = 290	200 + 209
90 + = 290	90 + = 209
290 = 200	209 = 200
290 = 90	209 = 209
200 + 90 + 3 =	400 + 90 + 5 =
200 + 90 + = 293	400 + 90 + = 493
200 + 3 + = 293	400 + 5 + = 495
90 + + 3 = 293	90 + + 5 = 495
293 = 290	495 = 490
293 = 200	495 = 400
293 = 203	495 = 405
293 = 3	495 = 5
293 = 290	495 = 490
293 = 93	495 = 95
635 = 630	737 = 730
635 600	737 = 700
635 = 605	737 = 707
635 = 5	737 = 7
635 = 35	737 = 37

Variation

Variation: supports fluency

Conceptual Variation

Conceptual variation means the opportunity to work on different representations of the same mathematical idea; include routine and non-routine

Procedural Variation

Procedural variation means a set of numerical questions where there are small changes/ links between each question

10, 20, 30, 40,, _ 11, 21, 31, 41,, 12, 22, 32, 42,, _	/ /
	132 x 7 = 132 x 8 = 133 x 8 = 143 x 8 = 145 x 9 = 265 x 9 =
1/3 ÷ 2 = 1/3 ÷ 3 1/3 ÷ 5 = 1/3 ÷ 6	= 1/3 ÷ 4 = = 1/3 ÷ 2 =

<u>Mathematical Thinking</u> <u>Variation</u>

Mathematical Thinking variation means small changes to reasoning problems through numbers, complexity or context

Nikki cycles 1200m. Charles cycles 1 ½ km. Charles says "I've cycled the furthest." Is he correct? Explain your answer:

Rachel cycles 1200m. Miri cycles 1 ½ km. Rachel says "I've cycled the furthest." Is she correct? Explain your answer:

Emma swims 1450m. Sharon swims 1 ½ km. Donna says "They both swam the same distance" Is she correct? Explain your answer:

Consider what level of variation is suitable for the concept, and for your class.

= 10 + 9	= 10 + 9	= 10 + 9	= 10 + 9	= 10 + 9
= 11 + 9	= 11 + 9	= 11 + 9	= 12 + 5	= 12 - 5
= 12 + 9	= 12 + 9	= 15 + 9	= 10 + 4	= 10 + 4
= 13 + 9	= 13 + 9	= 26 + 9	= 18 + 2	= 18 ÷ 2
= 14 + 9	= 23 + 9	= 54 + 9	= 3 + 17	$_{} = 3 \times 4$
= 15 + 9	= 24 + 9	= 17 + 9	= 13 + 9	= 13 + 9
= 16 + 9	= 34 + 9	= 58 + 9	= 27 + 9	= 20 + 7
= 17 + 9	= 44 + 9	= 79 + 9	= 9 + 19	= 38 - 10
= 18 + 9	= 47 + 9	= 34 + 9	= 18 + 5	= 5 x 10
= 19 + 9	= 49 + 9	= 15 + 9	= 34 + 9	= 4 + 5 + 9

Variation

Variety

Have a go...

- Find your next unit/lesson on White Rose
- What is the learning?

- What would the fluency practice for the lesson look like?
- How could you use variation to support the learning?

Stem Sentences

Stem sentences are an oral or written framework which is repeated. It helps children to identify patterns and remember key facts.

I can solve two step prob	lems involving converting
Part 1 - Copy and complete these is	
and configurate continue these sente	nces
A	B
I litre is made up from 1,000 ml. 2 litres is made up from <u>2000</u> ml. 3 litres is made up from <u>3000</u> ml. 7 litres is made up from <u>1000</u> ml. 9 litres is made up from <u>1000</u> ml. 12 litres is made up from <u>12,000</u> ml.	1.5 litres is equivalent to 1,500 ml. 2.5 ✓ litres is equivalent to 2,500ml. 3.5 ✓ litres is equivalent to 3,500ml. 5.5 ✓ litres is equivalent to 5,500ml. 1.5 ✓ litres is equivalent to 7,500ml. 10.5 ✓ litres is equivalent to 10,500ml.
C	D
1.2 litres is equivalent to 1,200 ml. 2.2 litres is equivalent to 2,000 / ml. 2.3 litres is equivalent to 2,300 / ml. 5.3 litres is equivalent to 5,300 / ml. 9.4 litres is equivalent to 9,400 / ml. 10.9 litres is equivalent to 10,900 / ml.	1.25 litres is the same as 1,250 ml. 2.35 \checkmark litres is the same as 2,350ml. 3.45 \checkmark litres is the same as 3,450ml. 5.46 \checkmark litres is the same as 5,450ml. 7.65 \checkmark litres is the same as 7,650ml. 10.75 \checkmark litres is the same as 10,750ml.
E	E
1.12 litres is equal to 1,120 ml. 2.32 litres is equal to 2,320 / ml. 2.33 litres is equal to 2,330 / ml. 5.53 litres is equal to 5,530 / ml. 9.04 litres is equal to 9,040 / ml. 10.49 litres is equal to 10,490 / ml.	1.005 litres is then same as 1,005 ml. 2.005 litres is equal to as 2,005ml. 3.007 litres is equal to as 3,007ml. 3.067 litres is equal to as 3,057ml. 3.087/litres is equal to as 3,087ml. 10.046 litres is equal to as 10,046ml.

Have a go...

- Find your next unit/lesson on White Rose
- What is the learning?
- What stem sentences would support the learning?
- Examples are on the White Rose planning.
- Can you use variation and fluency to support?

Number Fluency 'Flashback Maths'

When solving number problems, we need to equip our children with the ability to choose efficient methods drawing on their knowledge.

Alongside more formal methods, we teach children a range of mental maths skills and how to use jottings to support their thinking.

Number Fluency 'Flashback Maths'?

5 x 8 =	8 x 12 =	6 x 8 =	7 x 6 =	4 x 12 =
0.1, 0.2, 0.3,,	0.4, 0.5, 0.6,,	0.7, 0.8, 0.9,,	1.1, 1.2, 1.3,,	1.7, 1.8, 1.9,,
465 + = 2012	567 + = 3204	+ 723 = 3205	+ 766 = 6005	867 + = 2014
1⁄2 of 244 =	Half of 324 =	½ of 452 =	Half of 532 =	1⁄2 of 954 =
4.9 – 1.23 =	6.8 – 2.45 =	5.7 – 2.34 =	6.5 – 4.56 =	9.4 – 2.64
560 ÷ 10 =	565 ÷ 10 =	574 ÷ 10 =	634 ÷ 10 =	751 ÷ 10 =

- Completed at the start of Maths lessons or after registration (once children are settled back in)
- Number and Fraction focus (similar to the Arithmetic test!)
- Focus on mental recall, jottings, visuals and formal methods
- Children will have a time limit to complete the questions and use the remaining time to check answers
- A set of questions with particular themes
- Only taught concepts but from any year group objective
- Keep learning alive!
- Use variation according to security
- Self checking when appropriate to the year group (Inverse Check over Another method Redo Estimate)
- Choose a teacher to plan this for a half term or so, so that they can keep track of what skills have been covered

Flashback Maths Yr 6 Example

- Get into the routine at the start of Maths lessons
- Encourage and praise working out!
- Adults to support children working below
- Give a time limit appropriate to their age (usually 5 mins)
- Children to self mark
 Model efficient and alternative methods when marking
- Errors can be addressed whole class or through pupil/group intervention

Week 12 – Day 1	Week 12 – Day 2	Week 12 – Day 3	Week 12 – Day 4	Week 12 – Day 5
180 ÷ 30 = 6 ~	$180 \div 60 = 34$	150 ÷ 30 = 5	120÷30= 4	$120 \div 60 = 24$
XXIX = 294	XL =	LIV = 54	LIX = 59	XC = 90/
$2/5 \times 2 = 4/1$	2/5 x 3 =	$2/3 \times 2 = \frac{1}{3}$	$2/3 \times 5 = 3'_{2}$	4/5 x 4 =
1.57 x 3 = 4.714	2.36 x 3 = 7.0	$4.76 \times 5 = 23.1$	$463 \times 7 = 841$	$402 \times 8 =$
1/2 + 1/9 = 1/1	$3/4 \times 3/7 = 9/2$	$4/5 - \frac{1}{2} = 3110$	1/3 - 5 - 1/16	5/7+3/11-
$943 \div 41 = 23$	$14104 \div 41 - 300$	1 135 : 12 - 47 07	×10012 · 12 - 46	247 + 3/14 -
08+ 03 -11	0.0+ $0.0-11$	1,433 - 42- 41.0	10,942 - 42 = 45	14,005 ÷ 45 =
4/7	0.5 + 0.2 - 1.1 - 7/-7/-7/-7/-7/-7/-7/-7/-7/-7/-7/-7/-7/-7	0.9 + 0.0 = 1.4	0.5 + 0.9 = 1.4	0.3 + 1.1 = 1.4
2.2 1	221	00241	1-0	123 11 Minim
$\frac{2}{6}$ $\frac{2}{1}$ $\frac{4}{5}$	2.36		L-50	86 C 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
3 1 5	XJOO	411141.04	1 5-1 1=1 2 - 5-1 V-10	129 0 1 0 00
	108		3 15 1210	112
157	1 + 1	2x2-4		258 1.02
X 3		3113	00451	× 8
471-10=4	13,3-9	5.1.1.4	42 11818921442	11 8.16
48	4 7 78	15	1 1 1 1 2 1 1	-0.3 +
1 2			$0 4 7 0 2^{4} 0$	01.42 4 37
000	100270	1176 11 211	1411976101910	
1023	11 11 11 14 22 11	410 441	13 3.00 4 0.	<u> </u>
4 1 9 4 3	4111411014	CCX	1+5	4
0		2380-100= 4	2 3 15 1	00341
41 11	410	33 23.8	54 189	431146643
82 -0.8	82 3278		126 -168	
123 03	123	41	168 021	
164	164 2	15 21	\$710	1 N216 V-10
	1066	(12 - J×5	251 11 (2	1 29 0 100
	1000	8 6 2	274 0 1,6 3	1 49 07100
	46 9	0-2:23	160X 1	0.3+
	28112	10 10 10	+ 42 8.41	To Stadiont
	15		210 42	ICARE 5 64
	XIIIX		144	0.0

Where to get your question ideas from...

Mathematics Progression and Expectations in Number Fluency

Addition					
Add three 1-digit numbers	KS1 – Addition, use of symbols, varied				
5 + 7 + 3 = = 7 + 8 + 3	sentence structures				
Add three numbers within 100	KS1 – Addition, use of symbols, varied				
15 + 7 + 3 = = 7 + 18 + 3	sentence structures				
Add two numbers which bridge the 100s	KS1 – Addition, use of symbols, varied				
94 + 4 = = 94 + 4	sentence structures				
Add multiples of 10 to a 2-digit number	KS1 – Place value, addition, use of				
23 + 20 = = 56 + 40	symbols, varied sentence structures				
Add multiples of 10 to a 3-digit number	Year 3 – Place value, Addition				
222 + 70 = = 359 + 60					
Add multiples of 100 to a 3-digit number	Year 3 – Place value, Addition				
222 + 700 = = 359 + 600					
Add a 1-digit and a 2-digit number	KS1 – Place value, addition, use of				
22 + 7 = = 35 + 6	symbols, varied sentence structures				
Add two 2-digit numbers	KS1 – Addition, use of symbols, varied				
23 + 54 = = 36 + 25	sentence structures				
12 + = 37 24 + 37 =					
Add 1-digit and a 3-digit number	Year 3 – Addition, use of symbols, varied				
3 + 134 = = 7 + 291	sentence structures				
222 + 7 = = 359 + 6					
Add numbers with up to 3 digits, using formal written	Year 3 – Addition, use of symbols, varied				
methods of columnar addition	sentence structures				
568 + 53 = 723 + 537 =					
= 625 + 271 + 625 = 823					
Add numbers with up to 4 digits, using formal written	Year 4 – Addition, use of symbols, varied				
methods of columnar addition	sentence structures				
6541 + 23 = 6721 + 432 =					
1347 + 4356 = = 4357 + 4677					
Add numbers with more than 4 digits, using formal written	Year 5 – Addition, use of symbols, varied				
methods of columnar addition	sentence structures				
62,541 + 5,123 = 67,021 + 8,432 =					
1,34/ + 403,256 = = 45/ + 46,577	Version Addition and Secondaria				
Solve addition problems with numbers up to 10,000,000	rear 6 – Addition, use of symbols, varied				
bu2,541 + 57,723 =+ 817,432 = 7,354,679	sentence structures				
1,508,347 + 403,258 = = 40,557 + 987,577					

Number Bonds				
Use number bonds and related facts within 10	KS1 – Number bonds, place value,			
5 + = 7 + 4 = 7 8 = 6 +	addition, subtraction, use of symbols,			
6-3=9=7 1=4	varied sentence structures			
Use number bonds and related facts to 10	KS1 – Number bonds, place value,			
5 + = 10 + 4 = 10 10 = 6 +	addition, subtraction, use of symbols,			
10 - 3 = 10 = 7 9 = 10	varied sentence structures			
Use number bonds and related facts within 20	KS1 – Number bonds, place value,			
5 + = 12 + 4 = 13 11 = 6 +	addition, subtraction, use of symbols,			
16 - 8 = 16 = 7 15 = 16	varied sentence structures			
Use number bonds and related facts to 20	KS1 – Number bonds, place value,			
5 + = 20 + 14 = 20 20 = 6 +	addition, subtraction, use of symbols,			
20 - 3 = 20 = 7 9 = 20	varied sentence structures			
Use and derive related facts to 100	KS1 – Number bonds, place value,			
40 + = 100 100 = 30 +	addition, subtraction, use of symbols,			
100 - 80 = = 70	varied sentence structures			
Use number bonds to 100	KS1 – Number bonds, place value,			
42 + = 100 100 = 37 +	addition, subtraction, use of symbols,			
100 - 82 = 100 = 56	varied sentence structures			
Use number bonds to 1000	Year 3 – Number bonds, place value,			
400 + = 1000 1000 = 800 +	addition, subtraction, use of symbols,			
1000 - 800 = 1000 = 200	varied sentence structures			
Use fraction number bonds to 1 with the same denominator	Year 4 – Number bonds, fractions, Place			
$\frac{1}{2} + \frac{1}{2} = 1$ $\frac{1}{3} + \frac{1}{3} = 1$ $\frac{2}{7} + \frac{1}{7} = 1$	value, addition			
Use decimal number bonds to 1	Year 4 – Number bonds, decimals, Place			
0.3 + = 1 0.8 + = 1	value, addition, subtraction			
1 - 0.9 = 1 = 0.5				
Use decimal number bonds to 1	Year 5 – Number bonds, place value,			
0.11 + = 1 0.45 + = 1 1 = 0.08	use of symbols, varied sentence			
	structures, addition, subtraction			
Use decimal number bonds to any whole number	Year 6 – Number bonds, place value,			
2.25 + = 7 0.45 + = 6 8 = 4.23	use of symbols, varied sentence			
	structures, addition, subtraction			